The generator matrix

 1  0  1  1  1 X^2  X  1  1  1 X^2+X  1  1  1  1  0  1  0  1  1  X  1  1  X  1  1 X^2  1  1 X^2  0 X^2+X  1  1  1  1 X^2 X^2+X  X  1  X  1  0 X^2+X  1  1  0  1  1  1  1 X^2  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1
 0  1  1 X^2+X X^2+X+1  1  1 X+1  X X^2+1  1 X^2+X X^2+X X^2 X+1  1 X+1  1 X^2  1  1 X^2  1  1  0 X^2+X+1  1 X^2+X  1  1  1  1 X^2  X X+1 X^2+1  1  1  1 X^2  X X+1  X  1 X^2+X  1  0 X^2+1 X+1 X^2 X^2+X  X X^2  0  0  X  X X^2 X^2  X  X  X  0 X^2  0  0 X^2  0  X  X X+1
 0  0  X  0 X^2+X  X  X X^2  X X^2  0  0 X^2+X  X X^2  0  X X^2+X  0 X^2+X  0 X^2+X X^2 X^2+X  0  X  X  0  X X^2+X  0 X^2 X^2+X X^2+X  0 X^2  0 X^2  X X^2+X X^2+X X^2 X^2 X^2+X X^2  X  X  0  X X^2 X^2+X X^2  X X^2+X  X X^2+X  X  0 X^2  0 X^2 X^2 X^2+X  X  X X^2+X X^2  0 X^2+X  0  0
 0  0  0 X^2  0 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2  0  0 X^2  0  0  0 X^2 X^2  0 X^2  0 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2 X^2 X^2 X^2  0  0  0  0  0
 0  0  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2  0  0 X^2  0  0 X^2  0 X^2  0 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2  0 X^2 X^2  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2  0 X^2  0 X^2 X^2  0  0  0

generates a code of length 71 over Z2[X]/(X^3) who�s minimum homogenous weight is 66.

Homogenous weight enumerator: w(x)=1x^0+38x^66+106x^67+92x^68+196x^69+92x^70+150x^71+57x^72+80x^73+45x^74+50x^75+34x^76+40x^77+14x^78+8x^79+1x^80+2x^82+4x^84+4x^85+6x^87+2x^88+1x^96+1x^98

The gray image is a linear code over GF(2) with n=284, k=10 and d=132.
This code was found by Heurico 1.16 in 0.274 seconds.